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The reductive coupling af,-unsaturated carbonyl compounds

Table 1.

Key Results in the Optimization of Ligand Substructures

to aldehydes and ketones, termed the “reductive aldol reaction”, in an Enantioselective Aldol Coupling of MVK to Aldehyde 1a“

@)
O OH
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has become the topic of intensive investigafié¢tallowing seminal
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vinyl ketones, such as methyl vinyl ketone (MVK), would enable
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Catalytic Hydrogenative Aldol Addition (Our Prior Work)
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Me Me

o ﬁ\ (-FungP (12mol %) C\j\/f"\H O OH _2Cited yields are of isolated material. Enantioselectivities were deter-
H;@H R W 3 R HchH/LR mlned_by phlral statlo_nary.phase HPLC analysgs made in comparison to
Ha (1 atm) CH, racemic diastereomeric mixtures, ar@®0:1 syndiastereoselectivity was
(150 mol%) CH,Cly, 25 °C Not Formed 8_'152-53_"? ;frie(lrgc) observed in each case. See Supporting Information for detailed experimental

proceduresPReaction was conducted at°C.

In 2002, we reported that catalytic hydrogenation of vinyl ketones diethyl ketal. Finally, for substituents at the carbinol center, groups
in the presence of aldehydes results in reductive aldol coupling to larger than the dimethyl carbinol moiety confer a substantial
decrease in reactivity. Gratifyingly, using ligaA&-I (“AbbasPhos-

1), which combines the optimal 2- benzothienyl, diethyl ketal, and
hydrogen-mediated reductive aldol couplings of vinyl ketones are dimethyl carbinol substructures, aldehytis transformed to the
synaldol 1b with exceptional levels of relative and absolute
stereocontrol (Table 1).
such hydrogenative aldol couplings were especially challenging due  The scope of ligandAP-I was examined in reductive aldol

to the fact that (a) only trace quantities of product are obtained couplings of MVK and EVK to diverse aldehyd&sOptimal
efficiencies and selectivities were observed using the preformed
complex [Rh(cod)AP-1),]JOTf as a precatalyst. Beyond aldehydes
laand?2a, -heteroatom substituted aldehyd®s 4a and a-(het-
example, BINOL-derived phosphites and phosphoramidites, are ero)aryl aldehydeSa, 6a, and7a were found to engage in highly
diastereo- and enantioselective hydrogenative aldol additions (Table

furnish branched aldol adducts as diastereomeric mixfanester
(2006), it was found that high levels sefndiastereoselectivity in

obtained through the use of tri-2-furylphosphine @R)rligated

rhodium catalyst8¢-9:6 Efforts toward enantioselective variants of

using chelating phosphine ligands, (#jacidic ligands such as
FurP are required to enforce high levels of diastereoseleétyen,
(c) commercially available-acidic chiral monodentate ligands, for

presumably toosr-acidic and provide only trace quantities of

product. Hence, the design, preparation and assay of novel chiral2).? Interestingly, using the first generation ligamdP-I,

monodentaté>-based ligands was undertaken.

was sought. TADDOL-like phosphonifepresent three structural
elements that may be independently optimized: (a) Rharyl
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only

moderate enantioselectivities were observed for aldeigdgingle-
Over a period of years numerous ligands were assayed, yet thoserystal X-ray diffraction analysis of [Rh(cod)(lDTf (L = the
displaying promising levels of asymmetric induction were not acetonide ofAP-I) reveals aC,-symmetric arrangement (Figure
amenable to facile and systematic structural variation. Hence, a1). Based upon the hypothesis that a similar meighnd arrange-
versatile template enabling well-defined structure-selectivity trends ment is evident in the stereo-determining event, ligakeldl and
AP-IV were designed. For ligandsP-11 andAP-IV the (benzo)-
thiophene moiety is substituted such that the purported chiral pocket
moiety, (b) the ketal substructure, and (c) the groups appended tois deepened, potentially conferring heightened levels of enantiose-
the tertiary carbinol center. In terms of enantioselectivity, the lection. The veracity of this analysis is supported by the fact that
2-benzothienyl moiety was best. The role of the ketal moiety was AP-1I andAP-1V are both found to induce higher levels of optical
examined next. Here, improved selectivity is observed using the enrichment, wherea&P-I1I , which projects the methyl residue into

10.1021/ja710862u CCC: $40.75 © 2008 American Chemical Society
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Table 2. Diastereo- and Enantioselective Aldol Coupling of MVK
and EVK to Aldehydes la—7a2
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a Cited yields are of isolated material. Diastereo- and enantioselectivities
were determined by chiral stationary phase HPLC analyses made in
comparison to racemic diastereomeric mixtui¥@sAll reactions were
performed at O°C using the preformed complex [Rh(cod)(Ligasi@)Tf
and were reproduced a minimum of two times. See Supporting Information
for detailed experimental procedures.
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Figure 1. Structure of [Rh(cod)(LJOTf (L = the acetonide ofAP-I)
determined by X-ray diffraction revealS;-symmetric arrangement. The
figure graphics are depictions of crystallographic data imported into
ChembDraw Ultra 9.0. For clarity, the following substructures were omitted.
Top: The methyl groups and triflate ion. Front: The methyl groups, triflate
ion, and COD. Side: The methyl groups, triflate ion, dioxolane rings, and
phosphonite oxygen atoms.

Table 3. Effect of Ligands AP-I, AP-II, AP-lll, and AP-1V in the
Enantioselective Aldol Coupling of MVK to Aldehyde 4a2

O OH
Ligand AP-1 Ligand AP-lI Ligand AP-lll Ligand AP-IV
H3C)H/k/\08n 4b, 63% Yield 4b, 51% Yield 4b, 43% Yield 4b, 89% Yield
10:1dr,57% ee 15:1dr,80%ee  8:1dr,66%ee  22:1dr, 88% ee
y Me, Me
e,
O
pAr = w=Q Ar--gg
AP-|,R =
Me Me AP-ILR = M e AP-lll AP-IV

a As described in Table 2 footnotes.

an inactive volume of space, displays selectivities comparable to
those ofAP-I (Table 3).

In summary, we report the first enantioselective reductive aldol
coupling of vinyl ketones, which were achieved through the design
of an effective new class of TADDOL-like phosphonite ligands.
This study further demonstrates that organometallics arising
transiently in the course of catalytic hydrogenation offer a byprod-
uct-free alternative to preformed organometallic reagents, for
example enol(ate) derivatives, employed routinely in classical
C=X (X = O, NR) addition processes.
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Aromatic aldehydes display good reactivity and diastereoselectivity, but

poor enantioselectivities are observed. Additionally, unactivated aliphatic

aldehydes exhibit poor reactivity, providing diminished yields of product.

Studies aimed at addressing these deficiencies are in progress.

The absolute stereochemical assignments of the aldol adducts are made

in analogy to that determined for the 5-bromophthalimido derivative of

aldol adductlb and the 2-bromo-5-nitrobenzoate 8b, which were

established by single crystal X-ray diffraction analysis using the anomalous

dispersion method.
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